Dirichlet Processes and an Intrinsic Characterization of Renormalized Intersection Local Times

نویسنده

  • Jay ROSEN
چکیده

– We show that the nth order renormalized self-intersection local time γn(μ; t) for the symmetric stable process in R2, where the n-fold multiple points are weighted by an arbitrary measure μ, can be characterized as the continuous process of zero quadratic variation in the decomposition of a natural Dirichlet process. This Dirichlet process is the potential of a random measure associated with γn−1(μ; t).  2001 Éditions scientifiques et médicales Elsevier SAS RÉSUMÉ. – Lorsque les points multiples d’arche n sont changés par une mesure arbitraire μ, le temps local d’auto-intersection renormalisé γn(μ, t) du processus symétrique stable de R2 peutêtre caractérisé comme le processus de variation de quadratique nulle de la décomposition d’un processus de Dirichlet défini naturellement comme le potentiel d’une mesure aléatoire associée à γn−1(μ, t).  2001 Éditions scientifiques et médicales Elsevier SAS

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Derivatives of self-intersection local times

We show that the renormalized self-intersection local time γt(x) for both the Brownian motion and symmetric stable process in R is differentiable in the spatial variable and that γ′ t(0) can be characterized as the continuous process of zero quadratic variation in the decomposition of a natural Dirichlet process. This Dirichlet process is the potential of a random Schwartz distribution. Analogo...

متن کامل

Large Deviations for Renormalized Self - Intersection Local times of Stable Processes

We study large deviations for the renormalized self-intersection local time of d-dimensional stable processes of index β ∈ (2d/3, d]. We find a difference between the upper and lower tail. In addition, we find that the behavior of the lower tail depends critically on whether β < d or β = d.

متن کامل

Moderate deviations and laws of the iterated logarithm for the renormalized self-intersection local times of planar random walks

We study moderate deviations for the renormalized self-intersection local time of planar random walks. We also prove laws of the iterated logarithm for such local times

متن کامل

Integral representation of renormalized self-intersection local times

In this paper we apply Clark-Ocone formula to deduce an explicit integral representation for the renormalized self-intersection local time of the d-dimensional fractional Brownian motion with Hurst parameter H ∈ (0, 1). As a consequence, we derive the existence of some exponential moments for this random variable.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001